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A numerical analysis of the sech/tanh (or hyperbolic secant) and
tanh/tan adiabatic inversion pulses provides a set of master equa-
tions for each type of pulse that guarantee their optimal imple-
mentation over a wide range of practical conditions without need-
ing to further simulate the inversion profiles of the pulses. These
simple equations determine the necessary maximum RF ampli-
tude (RFmax) required for a preselected degree of inversion across
a chosen effective bandwidth (bweff) and for a chosen pulse length
(Tp). The two types of pulse function differently: The sech/tanh
pulse provides a rectangular inversion profile with bweff being a
large fraction of the adiabatic frequency sweep (bwdth), whereas for
tanh/tan bweff is ≤bwdth/20. If the quality of inversion is defined
as the minimum allowable extent of inversion, ιbw, at the bound-
aries of bweff, two basic linear equations are found for both types of
pulse and these are of the form (RFmaxTp)2 = m1 Tpbwdth + c1 and
Tpbwdth = m3Tp bweff + c3. The different behavior of the two pulses
is expressed as different dependencies of the slopes mn and inter-
cepts cn on ιbw and allowances are made for second order effects
within these equations. The availability of these master relation-
ships enables a direct comparison of the two types of adiabatic pulse
and it is found that tanh/tan requires about half the pulse length of
an equivalent sech/tanh pulse and also has the advantage of being
less sensitive to the effects of scalar coupling. In contrast sech/tanh
delivers about half the total RF power of an equivalent tanh/tan
pulse. It is expected that the forms of these two basic linear equa-
tions are generally applicable to adiabatic inversion pulses and thus
define the concept of “linear adiabaticity.” At low values of Tpbwdth
or Tp bweff the linear equations no longer apply, defining a region
of “partial adiabaticity.” Normal adiabatic pulses in the middle of
this partial region are more efficient in terms of RFmax or Tp but are
moderately less tolerant to RF inhomogeneity. A class of numeri-
cally optimized pulses has recently been developed that specifically
trades adiabaticity in an attempt to gain RFmax or Tp efficiency. In
comparison to normal adiabatic pulses implemented under optimal
conditions, these new partially adiabatic pulses show only marginal
improvements; they are restricted to single values of Tp bweff, and
they are vastly less tolerant to RF inhomogeneity. These compar-
isons, and direct comparisons between any types of inversion pulse,
adiabatic or otherwise, can be made using plots of (RFmax Tp)2 or
(Total Power) Tp versus Tp bweff. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Adiabatic inversion pulses will play an important role in high-
resolution NMR spectroscopy particularly for the automation
of pulse sequence methods (1) and for greater bandwidths as
larger magnetic fields become available. Their unique and valu-
able property is their consistent 180◦ spin rotations independent
of any variation in RF amplitude above a minimum limiting
value. We provide universally applicable master equations that
relate the five experimental variables of prime importance and
so determine the most efficient general conditions for the im-
plementation of these pulses. This analysis was undertaken for
two types of adiabatic inversion pulse widely used in MRI and
MRS: The hyperbolic secant or sech/tanh (amplitude/frequency
modulation) pulse (2) and the tanh/tan pulse (3, 4).

One criticism of adiabatic pulses has been that they are too
long for applications in high resolution NMR. However, it has
been shown experimentally (5) and proven rigorously (6) that
scalar coupling proceeds normally during such pulses, but with
reduced effective coupling constants. This reduction is only
≈10% and adiabatic pulses can occupy the whole of (2J )−1

delay periods in pulse sequences and thus increase these delays
by only 10%. For example, 3-ms sech/tanh pulses can be used
in 1H–13C NMR and bandwidths up to about 500 kHz with stan-
dard RF amplifiers and NMR probes can be obtained, vastly
more than is normally required.

Nevertheless, if available peak RF amplitude (RFmax) is in-
sufficient for a sech/tanh inversion pulse, adiabatic pulses with
lower constant or near constant RF amplitude can still be em-
ployed. During the last 20 years this type of adiabatic pulse
has evolved and improved from the first crude example, a
constant/linear or CHIRP pulse (7 ), to the constant/tan vari-
ation (8) and the tanh/tan pulse (3, 4). In the latter the RF ampli-
tude is smoothly but rapidly increased to a maximum value so
that it is constant across about 90% of the pulse, so eliminating
Gibbs overshoot “wobbles” arising from the extreme boundary
truncation of a rectangular RF function.
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Composite inversion pulses can also be designed to cover large
bandwidths but they have not been shown to be competitive with
adiabatic pulses in terms of maximum bandwidth, minimum
power deposition, and ability to change the bandwidth using the
same pulse. As demonstrated emphatically by the development
of adiabatic decoupling (e.g., (9, 10)), the bandwidth of an adi-
abatic pulse increases in proportion to RF2

max, whereas that of a
composite pulse increases only linearly with RF amplitude.

Numerical optimization strategies have been used to design
adiabatic pulses for specific purposes (e.g., (11–13)) and are
consequently not as generally applicable as pulses with analytic
waveforms such as sech/tanh or tanh/tan. Furthermore the digi-
tal lists for the waveforms of numerically optimized pulses must
be calculated in advance of experiment whereas analytic wave-
forms are generated from mathematical functions that are easily
implemented “on the fly” with computer macros. In later sec-
tions we compare the sech/tanh and tanh/tan pulses with a new
class of numerically optimized pulse designed to take advantage
of partial adiabaticity. This comparison helps justify the need to
determine the optimum conditions for analytic adiabatic pulses
as accomplished in this paper.

BACKGROUND AND METHODS

In keeping with our previous nomenclature (5, 9, 10), the
sech/tanh amplitude and frequency modulations are

B1 = RFmax sech β(1 − 2t/Tp); [1]

�H = (bwdth/2)[tanh β(1 − 2t/Tp) + s], [2]

where the amplitude truncation is determined by sech β = 0.01
(β = 5.3); Tp is the pulse length; the bandwidth of the frequency
sweep is ±bwdth/2; and s is the dimensionless resonance offset
of the pulse in units of bwdth/2 where s = 0 denotes an on-
resonance pulse. The corresponding equations for the first half
of the tanh/tan pulse are

B1 = RFmax tanh ζ t/Tp; [3]

�H = (bwdth/2)[tan κ(1 − 2t/Tp) + s]/ tan κ, [4]

where ζ = tan κ = tan 0.968π = 20, and the second-half equa-
tions are the time-reversed equivalents of Eqs. [3] and [4] (3, 4).
Throughout, RFmax and bwdth are in units of kilohertz with Tp

in milliseconds. (Alternative parameterizations and units for the
sech/tanh pulse can be found in Ref. (14) where RFmax ≡ q|F |,
β ≡ λ/2, bwdth ≡ 2 |F |, and Tp = T .)

The adiabatic condition requires the quantity |dα/dt |/Be

to be small, where α is the angle the effective RF field Be
makes with the xy plane of the rotating reference frame,
given by tan α = �H/B1. Defining the usual scaling factor,
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v = RFmax/(bwdth/2), for any adiabatic pulse

|dα/dt |/Be = bwdth
/[

RF2
maxTp f1(v, s, t)

]
= [Tpbwdth f2(v, s, t)]−1, [5]

where f1 and f2 depend on the forms of the amplitude/frequency
functions of the pulse. For adiabatic decoupling ((9, 10) and
references cited therein), we found that at constant Tp, decou-
pling efficiency had a common dependence on bwdth/RF2

max and
this derived from a common dependence of inversion efficiency
at the center of the bandwidth for single inversion pulses on
bwdth/(RF 2

maxTp) since from Eq. [5] this factor ensures some
commonality in adiabaticity. Furthermore, we found linear re-
lations between bwdth and effective bandwidth, bweff, for both
single pulses and decoupling and in the case of single pulses at
constant Tp the relationship was particularly simple and given
by

bwdth = c + bweff. [6]

In other work (5) we noted a commonality of attributes for the
sech/tanh pulse at constant Tpbwdth, which is also attributable to
the adiabatic condition as in Eq. [5]. This dimensionless quantity,
Tpbwdth, is familiar as the R value or factor in many references
describing adiabatic pulses (e.g., (1, 3, 4, 11)) but here we will
continue to write it explicitly to more easily keep in mind its
meaning. In preliminary calculations for this article we found a
linear relation between the reciprocals of bwdth/(RF2

maxTp) and
Tpbwdth for the sech/tanh pulse, which can be recast more con-
veniently as a linear relation between (RFmaxTp)2 and Tpbwdth
and this forms the basis of our master equations determined
below.

It is possible to derive algebraic equations for the evolution
of the effective field Be during an adiabatic pulse and in some
studies (e.g., (5, 15)) this has provided valuable basic theory.
But this method is only relevant if the spins closely follow Be

throughout the pulse; i.e., the pulse is nearly 100% adiabatic.
Here we are concerned with finding equations for optimal con-
ditions at variable extents of inversion across the entire effective
bandwidth. Clearly the spins do not always closely follow Be un-
der such circumstances. Consequently, our approach has been
to numerically simulate adiabatic pulses over a wide range of
conditions to determine the relevant master equations.

For this study we designate the amount of −z magnetization
after the pulse at the center of the inversion profile as the inver-
sion number, ιo, so that

percent inversion = 50(1 + ιo). [7]

For experimental applications the user needs to know the ap-
propriate values of RFmax, Tp, and bwdth for a chosen effective

bandwidth, bweff, and a chosen amount of inversion guaranteed
across bweff. Thus the degree to which the inversion number is
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FIG. 1. A typical inversion profile for the sech/tanh pulse (solid line; Tp =
1.0 ms, bwdth = 32 kHz, RFmax = 8.78 kHz, bweff = 25.0 kHz, ιo = 0.985,
and �ι = 0.005) matched with a comparable tanh/tan pulse (dashed line; Tp =
1.0 ms, bwdth = 612 kHz, RFmax = 6.13 kHz, bweff = 25.0 kHz, ιo = 0.996, and
�ι = 0.016). The user must choose a minimum inversion number, ιbw, defining
the effective bandwidth bweff and thus an acceptable quality for inversion across
the spectral width. The effective bandwidths for the two types of inversion
profile are indicated in units of bwdth/2 showing that the tanh/tan pulse acts
to uniformly invert only a small fraction of the bwdth value. The inversion
number on resonance, ιo, which determines RFmax, should be greater by an
amount �ι than ιbw, the number defining bweff. For the sech/tanh pulse, �ι

should be sufficient so that the profile “wobbles” in the shoulder region (shaded)
lie above the ιbw value defining bweff. This is illustrated further in the figure
inset, an expanded view of the shoulder region. From the calculations leading to
Fig. 5, the minimum practical �ι was found to be 0.005 units for the sech/tanh
pulse.

allowed to deteriorate, �ι = ιo − ιbw, at the extremes of bweff,
must also be selected, as illustrated in Fig. 1 for typical simula-
tions of frequency profiles.

Numerical simulations were made using Pulsetool, a Varian
computer program for Bloch equation calculations that applies
a 3 × 3 rotation matrix for each digitized time increment in
a modulated RF pulse, and 1000 points across the frequency
axis were calculated for every profile. Phase increments that
correspond to the integral of the frequency sweep functions,
Eqs. [2] and [4], were employed. Tp was varied in the ranges of
0.25–3 ms and 0.025–2 ms, and bwdth was varied in the ranges
of 5–120 kHz and 75–5000 kHz for sech/tanh and tanh/tan,
respectively.

RFmax values were measured at chosen inversion numbers ιo
in the range 0.8–0.996 for sech/tanh and at ιo = 0.996 for
tanh/tan for many combinations of Tp and bwdth. Complete
inversion profiles at these calibrated RFmax values were sim-

ulated to determine bweff at different inversion numbers ιbw in
the range 0.6–0.996 for sech/tanh and 0.9–0.996 for tanh/tan.
BENDALL

Second-order modulations or “wobbles” across the sech/tanh
inversion profile, which are most severe at the shoulders of the
inversion profile as indicated in the inset to Fig. 1, complicated
these measurements to the extent of creating scatter in the data
points from the various linear relationships found. For example,
a wobble can add to the profile shoulder and increase bweff or
subtract from the shoulder and decrease bweff. Values of bweff

at ιbw = ιo were obtained by ignoring the negative excursions
of the wobbles below ιbw with the limit of the effective band-
width determined by the excursion of the shoulder below ιbw.
The minimum �ι to prevent these negative excursions was found
to be 0.005 units for Tpbwdth ≤ 100 increasing to 0.01 units at
Tpbwdth = 300. The tanh/tan pulse never yields a flat profile so
bweff must always be measured at an inversion number ιbw less
than ιo.

Inversion profiles were initially digitized in 1000 steps, but
during the course of the study it was found that Tpbweff val-
ues above 70 increasingly generate high frequency oscilla-
tions across the profiles of both types of pulse. Accordingly,
the minimum number of waveform increments was set at
1000Tpbweff/70. This problem presumably arises because the
number of steps in the digitized phase waveform is insufficient
to correspond to a smooth frequency sweep. Nevertheless, the
phenomenon cannot be explained in terms of a required mini-
mum phase increment since the minimum increment for tanh/tan
is about a factor 20 larger than that of the sech/tanh pulse.

THE SECH/TANH (HYPERBOLIC SECANT) PULSE

Numerical Analysis

Excellent linear plots of (RFmaxTp)2 versus Tpbwdth were ob-
tained for selected on-resonance efficiencies for the sech/tanh
pulse as shown in Fig. 2. However, from the inset to Fig. 2 and
as expected from prior work (5), there is an increasing divergence
of the data from the fitted straight lines for Tpbwdth values less
than 10 resulting from an increasing violation of the adiabatic
limit.

The slopes, mRF, and intercepts, cRF, of these linear plots,
which are given by

(RFmaxTp)2 = mRFTpbwdth + cRF, [8]

are replotted in Fig. 3 as 1/m2
RF and 1/cRF against inversion

number ιo, yielding

1/m2
RF = −2.695ιo + 2.809 − 1.5 × 10−4/(1 − ιo); [9]

1/cRF = +2.885ιo − 2.999 + 1.4 × 10−4/(1 − ιo). [10]

The first two terms in Eqs. [9] and [10] correspond to the straight
line fits to the data for ιo ≤ 0.98 (shown in Fig. 3), which are
sufficiently accurate to calibrate pulses for most practical ex-

perimental conditions. For ιo values very close to one, RFmax

tends to infinity so that mRF goes to zero, and to fit the data
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FIG. 2. Plots of (RFmaxTp)2 versus Tpbwdth for the sech/tanh pulse at
various inversion numbers on resonance ιo from 0.996 to 0.800. These plots
are fitted to straight lines, given by Eq. [8] with correlation coefficients (r2)
greater than 0.999. The data set comprises 55 simulated pulses at each inversion
level including duplicate measurements for Tpbwdth = 5, 10, 20, 30, 60, 90, 120,
100, and 150 arising from different combinations of bwdth and Tp. The inset
provides an expanded view for low Tpbwdth values showing increased deviation
from the regression lines for Tpbwdth values less than 10.

the third hyperbolic correction term is required. The complete
equations [9] and [10] should be employed for high values of ιo,
for example, to avoid 0.5% losses in S/N when using numerous
sech/tanh pulses in an NMR pulse sequence.

As depicted in Fig. 1, the effective bandwidth bweff is always
less than bwdth because the frequency profile for a sech/tanh
pulse is not perfectly rectangular and bwdth reflects the width of
the profile at half height, i.e., at s = ±1. Plots of the dimension-
less quantities Tpbweff versus Tpbwdth were made as illustrated
in Fig. 4. These plots were always linear and had slopes within
1% of unity. Thus, the extensive data obtained fit the simple
equation

Tpbweff = Tpbwdth − cbw, [11]
in agreement with Eq. [6]. The overall shape of the inversion
profile does not change greatly with ιo so that cbw is independent
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of ιo as exemplified by a comparison of the data for ιo = 0.98 and
0.88 in Fig. 4. Instead, cbw depends on �ι, where �ι = ιo − ιbw,
and a plot of cbw versus �ι can be fitted to an equation of the
form y = (ax + b)−0.5 + 1. Transposing this yields a linear plot
of (cbw − 1)−2 versus �ι as in Fig. 5. The scatter of data points
in Fig. 5 arises chiefly from wobbles on the profile shoulder
(illustrated in the inset to Fig. 1) which can increase or decrease
the effective bandwidth. These deviations are less for larger �ι

since this increasingly avoids the shoulder region. For reliable
experimental implementation of a master equation, a user will
normally prefer a guaranteed effective bandwidth rather than one
which might turn out to be a few percent too small. Accordingly
two further straight lines are provided in Fig. 5 corresponding
to a minimal limit on (cbw − 1)−2 and thus an upper bound on
cbw. Transposing the formulae for these straight lines via the
appropriate positive roots yields

cbw = (2.44�ι − 0.003)−0.5 + 1, �ι ≥ 0.02; [12]

cbw = (0.85�ι + 0.025)−0.5 + 1, �ι < 0.02. [13]

Use of these equations ensures that bweff is not underestimated.

Practical Implementation of sech/tanh Pulses
for the Broadband Inversion of Spins

For experimental application of sech/tanh pulses over a wide
range of conditions, the universal master expression [8] should
be used. Subsidiary Eqs. [9]–[13] provide the values of mRF, cRF,

FIG. 3. Linear plots of the inverse square of the slope mRF and the inverse
of the intercept cRF, from Fig. 2, versus inversion number ιo (r2 = 0.997 and
0.988, respectively). Data points for ιo ≥ 0.99 have been omitted from the linear
regression calculations. The dashed curves (r2 = 0.999 and 0.992, respectively)
given by Eqs. [9] and [10], which are indistinguishable from the straight lines

for ιo ≤ 0.98, correspond to the addition of hyperbolic correction terms to the
initial linear equations.
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FIG. 4. Examples of plots of Tpbweff versus Tpbwdth for the sech/tanh
pulse for on-resonance inversion number ιo = 0.98 at �ι = 0, 0.04 and 0.18
fitted to straight lines. Inversion profiles used for the measurement of bweff

were generated for chosen bwdth and Tp and values of RFmax were calculated
according to Eq. [8]. The slopes of the regression lines fitted to these and similar
data, comprising 16 such lines for �ι ranging from 0 to 0.18, averaged 0.998
and were within a range of less than 1% of unity (intercepts ranged from −7.2
to −2.5). Consequently the straight line fits shown in this figure and used in
Fig. 5 assume a unit slope. Superimposed in large open symbols are data for
ιo = 0.88, and �ι = 0 and 0.04, indicating excellent correspondence between
regression lines calculated for different ιo at constant �ι, particularly at larger
Tpbwdth and �ι. The additional dotted regression line in the expanded inset plot
has been derived from inversion profiles generated with exact values of RFmax

at ιo = 0.88 calculated from the Bloch equation, and it differs only slightly from
the corresponding line for RFmax obtained from Eq. [8].

cbw, and bwdth after selection of appropriate values of ιo and �ι.
Having first chosen an acceptable value of ιbw, the required ef-
fective bandwidth bweff, and a reasonable value for Tp, Eq. [11]
provides the value of bwdth and master Eq. [8] determines the
necessary minimum value for RFmax. As a quick alternative,
RFmax can be estimated from the contour plot in Fig. 6, which
guarantees 99% inversion (ιbw = 0.98) across the effective band-
width and Eqs. [13] and [11] yield bwdth = bweff + 6.85/Tp. For
example, the 13C shift range of 200 ppm at 600 MHz (30 kHz)
can be inverted with a 0.4 ms sech/tanh pulse given an avail-
able RF field of 17 kHz (a typical 15-µs 13C 90◦ pulse time).
Since all adiabatic pulses function better with more RF power,
the user may add a further 5–10% to the minimum RF amplitude
(or equivalently increase T by 10–20%) as insurance against
p

miscalibrations, RF inhomogeneity, or hardware variation.
D BENDALL

A scrutiny of the wobbles in the shoulder region, illustrated
in the inset to Fig. 1, determined that a minimum �ι = 0.005
should be used to ensure that ιbw lies below these wobbles.
Equation [8] is thus applicable to the range, 0.7 ≤ ιbw ≤ 0.99,
or a usual working range of 85–99.5% inversion of the nuclear
spins. From Fig. 2, this master equation should also be applicable
to the range 10 ≤ Tpbwdth ≤ 250.

The equations were checked for accuracy by selecting ιo, �ι,
bweff, and Tp, calculating bwdth and RFmax, simulating the pulse
profile, and measuring the actual ιo and bweff obtained. A total
of 85 checks were made over the ranges ιo = 0.85–0.995, �ι =
0.005–0.1, Tp = 0.05–60 ms, and bweff = 5–200 kHz, yielding
the ranges Tpbwdth = 13–300 and RFmax = 0.3–125 kHz. The
extent of inversion ιo at zero frequency offset was predicted
with extreme accuracy, the average error being only +0.05 ±
0.07% of inversion efficiency. The error in predicting effective
bandwidths was an average of +0.27 ± 0.95% over most of the
Tpbwdth range increasing to +3.7 ± 1.4% for Tpbwdth < 20
where poorer agreement was expected. The goal of attempting
to slightly overestimate ιo and bweff was thus largely achieved.
The largest negative errors were underestimates of −0.8% of
bweff for �ι < 0.02 concurrent with Tpbwdth ≥ 100 caused
by an increasingly complex pattern of wobbles on the profile
shoulder with increasing Tpbwdth. Even these small unwanted
deviations could be eliminated by introducing a slope mbw =
1.008 (i.e., a 0.8% increase) into Eq. [11]. This was simple to
implement (for the ranges �ι < 0.02 and Tpbwdth > 100) in a

FIG. 5. The intercepts from Fig. 4 plotted as 1/(cbw − 1)2 versus �ι fitted
to straight lines (r2 ≥ 0.991). Open data points (dotted line) are from a data set
created by Bloch equation simulations and the solid data points (dashed line) are
from a data set where RFmax was calculated according to Eq. [8] for ιo = 0.980.
The positive root of (cbw − 1)2 should be taken to determine cbw. Minimum
acceptable values of cbw for experimental applications are given by the two

additional straight lines, (cbw − 1) = 2.44�ι − 0.003 and (cbw − 1) =
0.85�ι + 0.025, corresponding to �ι ≥ or <0.02, respectively.
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FIG. 6. Contour plots of RFmax required for a sech/tanh inversion pulse,
calculated from master Eq. [8], to guarantee 99% inversion across the chosen
effective bandwidth at selected values of pulse length Tp (ιo = 0.985; �ι =
0.005; ιbw = 0.98). The boundary in the bottom left corner corresponds to an
adiabatic limit of Tpbwdth = 10 (Tpbweff = 3 for �ι = 0.005). The boundary in
the top right corner is determined by Tpbwdth = 300, the extent of our numerical
checks of Eq. [8] and subsidiary equations. The dotted line through the middle of
the contours corresponds to v = 2RFmax/bwdth = 0.5 with bweff = 0.8 bwdth
and Tp from Eq. [11].

short software macro written to automatically quantify bwdth
and RFmax and this modification changes the error in predicting
effective bandwidths to +0.61 ± 0.71%.

A common use of adiabatic inversion pulses will be at the
center of (2J )−1 modulation periods in heteronuclear pulse se-
quences. The effect of reduced scalar coupling can be deter-
mined from Fig. 10 of Ref. (5), or from the analytical equations
in Ref. (15) which provide the ratio of the reduced coupling to
the normal coupling constant, Jr/Jo, as a function of the dimen-
sionless quantities v(= 2 RFmax/bwdth) and resonance offset, s.
Allowance should be made for the slower J modulation effects
during an adiabatic pulse by increasing the total time (2J )−1

by an amount given by (1 − Jr/Jo)Tp. The dotted curved line in
Fig. 6 corresponds to v = 0.5, a typical value, and from Fig. 10
of (5) the average of Jr/Jo at s = 0 and s = ±0.8 at v = 0.5
requires an increase in the total (2J )−1 period by 12.5% of Tp. If
the (2J )−1 period is adjusted in this way there will nevertheless
be a small loss in signal intensity from the variation in Jr/Jo

across the bandwidth. If bweff is limited to 90% of bwdth there
is a maximum loss of signal at s = ±0.9 of 2% for v = 2 de-

creasing to 1% for small v. These losses apply to a pulse that
occupies the whole of a (2J )−1 period and become insignifi-
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cant for shorter pulses. For example, for a 1-ms pulse in a 3-ms
(2J )−1 delay the maximum signal loss is only 0.2%. The losses
are smaller or zero for |s| < 0.9 but rapidly increase for |s| > 0.9.
It is easy to model the curves in Fig. 10 of (5) with polynomials
so these modest corrections can be handled routinely by software
macros.

In consequence, there are three recommendations for the use
of sech/tanh pulses at the center of (2J )−1 modulation peri-
ods: Add an amount equal to (1 − Jr/Jo)Tp to the (2J )−1 time
where Jr/Jo is an average value across the effective bandwidth.
Keep this correction as small as possible by using close to the
maximum possible RFmax (avoiding amplifier compression) and
thus close to the smallest possible Tp. Do not permit bweff to
exceed 0.9 bwdth so that Eq. [11] is abandoned in favor of
bweff = 0.9 bwdth whenever cbw/Tp < 0.1 bwdth.

Additional recommendations are provided in Ref. (5) to effi-
ciently deal with J modulation effects during sech/tanh pulses at
the center of 1/J and chemical-shift-correlation delays. Sech/
tanh pulses have been used routinely as broadband inversion
pulses and as semiselective pulses (discussed below) for more
than 3 years in Varian’s ProteinPack, a semiautomated software
package of pulse sequences for protein NMR.

Selective and Semiselective sech/tanh Pulses

The rectangular shape of the inversion profile of typical
sech/tanh pulses, illustrated in Fig. 1, makes them suitable for
use as selective pulses. The bandwidth of the rectangular pro-
file may be chosen to select just one segment of a spectrum, or
just one edge of the profile may be positioned between spec-
tral regions. In either case, the bwdth parameter defining the
pulse, and used for the calibration of RFmax via Eq. [8], should
begin and/or end midway between the selected region and the
nonselected region, in contrast to broadband pulses for which
the important parameter is bweff. Equation [11] characterizes
the steepness of the edges of the rectangular profile and thus the
discrimination between selected and nonselected spins. Accord-
ingly, the spectral width between selected and nonselected spins,
i.e., the selectivity parameter �bw, is given by a rearrangement
of Eq. [11] as

�bw = bwdth − bweff = cbw/Tp, [14]

which complies with an expected inverse relationship between
pulse length Tp and selectivity.

Minimizing RFmax will not normally be an important factor,
so RFmax can be calibrated at or above the level necessary to
achieve ιo = 0.996. Setting �ι = 0.016 (ιbw = 0.98) provides
the conditions necessary to ensure ≥99% inversion of selected
spins and ≤1% inversion of nonselected spins, or a 100 : 1 dis-
crimination, and Eqs. [13] and [14] yield �bw = 6.1/Tp. If this is
too ambitious, choosing �ι = 0.092 provides the conditions for

a 20 : 1 level of discrimination and �bw = 3.1/Tp. The product
�bwTp = 3.1 is almost a factor of three larger than the analogous
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factors for I-BURP selective 180◦ pulses (16), but bwdth can be
changed relative to the �bw value whereas this is a fixed ratio for
the nonadiabatic I-BURP. Thus adiabatic pulses have an advan-
tage for selecting moderate to large spectral regions, sometimes
called semiselective spectroscopy. For example, if it is neces-
sary to select a 5-kHz-wide region (as in the 13C spectrum of
proteins) the pulse length for an I-BURP pulse must be 1 ms and
�bw is 530 Hz for 20 : 1 discrimination. In contrast, a sech/tanh
pulse delivering a 5-kHz bandwidth may still have a pulse length
of 10 ms and so achieve better spectral discrimination.

THE TANH/TAN INVERSION PULSE

Numerical Analysis

The properties of tanh/tan differ strikingly from the sech/tanh
pulse and so a different analytical approach is needed to deter-
mine master calibration equations. In particular, as illustrated in
Fig. 1, tanh/tan does not produce a flat profile across any frac-
tion of bwdth until RFmax is sufficiently large as to flatten the
center of the inversion profile against the 100% limit (ιo = 1). If
a smaller ιo is chosen (e.g., ιo = 0.996), results follow a linear
equation (r2 ≥ 0.998) of the same form as Eq. [8] and Fig. 2 for
the sech/tanh pulse. However, the magnitude of bweff increases
rapidly as a function of decreasing ιbw and produces a series of
straight line plots (r2 ≥ 0.999) of Tpbweff versus Tpbwdth at
constant ιbw given by
mized results, plotted in Fig. 8, demonstrates a dramatic change

Tpbweff = mbwTpbwdth − cbw, [15]

FIG. 7. (a) Plot of (RFmaxTp)2 versus Tpbweff at ιbw = 0.990 where RFmax was initially determined at various values of Tpbwdth and at ιo = 0.996 by Bloch
simulation. This is the “original” calibration line. Increases in RFmax at Tpbwdth = 62.5, 110, 275, 312.5, 500, 750, and 1000 (dotted curve) provided increases in
Tpbweff corresponding to parabolic curves, some of which are plotted, and yielded a final tangential straight line labelled “optimized.” (b) Optimized lines were

2

from the original results in that the individual lines with different
also determined for ιbw < 0.990 by finding tangents as in (a). In all cases r ≥ 0.

of the parabolas with a common tangent.
BENDALL

where the slope mbw depends sensitively on ιbw. This behavior
contrasts with that of sech/tanh in Eq. [11] and Fig. 4.

An increase in RFmax above that required for ιo = 0.996 flat-
tens the center of the inversion profile at ιo = 1 and also increases
bweff and the efficiency of the pulse for chosen values of bwdth
and ιbw. To analyze this effect, it is convenient to combine the
forms of Eqs. [8] and [15] to provide an initial baseline of effi-
ciency given by

(RFmaxTp)2 = mRFTpbweff + cRF, [16]

and (RFmaxTp)2 is replotted against bweff for �ι = 0.006 in
Fig. 7a. The resulting straight line is labelled “original.” In-
creases in RFmax at constant values of Tpbwdth cause large in-
creases in bweff producing parabolic curves that begin on the
original straight line. A common tangent to these curves can be
drawn and this straight line, labelled “optimized,” represents the
most efficient applications of the tanh/tan pulse, i.e., the largest
bweff values for a given RFmax. A series of optimum tangential
straight lines was also found at increasing values of �ι and these
are drawn in Fig. 7b. The initial choice of ιo = 0.996 is now ir-
relevant because a different choice would change the starting
points of the parabolic curves in Fig. 7a but still yield the same
parabolas and the same optimized straight line tangents. Thus
the slopes mRF and intercepts cRF of these optimized lines de-
pend on ιbw since the link with ιo (�ι is relative to ιo) has been
eliminated. The dependence of Tpbweff on Tpbwdth for the opti-
999 for the fit of these lines to the data points corresponding to the intersection
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FIG. 8. Plot of Tpbweff versus Tpbwdth using the data points that define the optimized lines in Fig. 7 (labelled “variable RF” method in the inset). At low
Tpbwdth (see inset) more reliable data points were obtained by the “variable bwdth” method. RFmax was minimized at four low values of Tpbweff at ιbw = 0.99 and
0.98 and two different values of Tp, yielding 16 additional points in the inset. The plotted straight line, corresponding to Eq. [17], is the best linear regression fit to
the data in the inset that also passes through the coordinates (88,1760) or Tpbweff = Tpbwdth/20 at high Tpbwdth. The scatter of data points in the inset from the
“variable RF” method of Fig. 7 reflects the difficulty of obtaining exact values from that method, whereas the scatter of the additional 16 points, which plot as four

bunches, arises from a real oscillation of the best bwdth values about the compromise line given by Eq. [17]. This real oscillation eventually yields the expanded

trajectories shown in Fig. 11 at low Tpbweff.

slope, given by Eq. [15], have collapsed to a single calibration
line in Fig. 8. The optimized dependence is now much more
similar to the behavior of sech/tanh depicted in Fig. 4.

An analysis of the results in Figs. 7 and 8 provides a basis
for a master equation for the tanh/tan pulse, but it is difficult to
obtain precise intercepts cRF by the method illustrated in Fig. 7a,
and there are second order oscillations in the data which depart
from the overall linear dependencies. More accurate results were
obtained by reasoning that optimal performance can be calcu-
lated by varying the bwdth parameter and iteratively searching
for the minimum RFmax at fixed ιbw, Tp, bweff, or equivalently,
by searching for maximum bweff at fixed ιbw, Tp, RFmax. We
have since found this to be a general procedure for any adia-
batic pulse and henceforth we will call this the “variable bwdth”
method.

The large scatter of data points at Tpbwdth = 1000 in Fig. 8
arises from the insensitivity of bweff to varying bwdth at high
Tpbwdth since from Fig. 7a the parabola for Tpbwdth = 1000 in-
tersects with the optimized tangent over a large range of Tpbweff

values. Application of the “variable bwdth” method confirms
that for Tpbwdth > 1000, Tpbweff = Tpbwdth/20 is an adequate
relationship, and undoubtedly the factor of 20 corresponds to
tanκ in the denominator of Eq. [4]. In contrast, the estimation of

bweff is sensitive to variation of bwdth at low values of Tpbwdth
and so extra data points were obtained using the more accurate
“variable bwdth” method yielding a best straight line fit in Fig. 8
given by

Tpbweff = Tpbwdth/19.6 − 1.8. [17]

Repetitive estimates of mRF and cRF varied a little at each value
of ιbw so the maximum values were accepted to eliminate un-
certainty caused by second order oscillations in the data. A plot
similar to Fig. 3 yielded (r2 = 0.9999)

1/m2
RF = −7.916ιbw + 8.295 − 9.2 × 10−4/(1 − ιbw). [18]

The dependence of cRF on ιbw for tanh/tan was also similar to
that of cRF on ιo for the sech/tanh pulse, although it was found
that the simpler equation,

cRF = 0.13(1 − ιbw)−0.5, [19]

fitted the data a little better (r2 = 0.999) than the form of
Eq. [10].

Equations [16]–[19] were checked for accuracy in a similar
manner to the sech/tanh pulse. A total of 110 checks were made
over the ranges ιbw = 0.8–0.99, Tp = 0.05–20 ms and bweff =

1–400 kHz, yielding the ranges Tpbweff = 4–400 and RFmax =
0.3–120 kHz. The error in predicting effective bandwidths was
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an average of +0.34 ± 0.43%. The largest negative errors of
−0.7% occurred for Tpbweff values between 4 and 10 units and
eliminating these the average is +0.39 ± 0.36%.

COMPARISON OF SECH/TANH AND TANH/TAN
INVERSION PULSES

Although these two pulses differ markedly in many respects,
the final master calibration equations have a similar form. In-
deed, the similarity would be even closer if the numerical anal-
ysis of the sech/tanh pulse was repeated using the “variable
bwdth” method since this would determine the optimum com-
bination of �ι and ιo for fixed ιbw, and thus be equivalent to
substituting �ι ≈ 0.005 and ιo ≈ ιbw + 0.005 in Eqs. [9]–[11]
and [13].

The availability of master equations for both pulses enables a
direct comparison as in Fig. 9 for equivalent parameters. For the
same RFmax and effective bandwidth the comparison shows that
as expected (4) the pulse length of a tanh/tan pulse is always less
than the equivalent sech/tanh pulse. The advantage is a factor
of 2.4 for 20-kHz pulses reducing to 1.8 for 100-kHz effective
bandwidths. However, this advantage is of value only if there is
insufficient time in a pulse sequence for a sech/tanh pulse. For
example, it has been noted above that a 1-ms sech/tanh pulse
can be used without difficulty in a 3-ms J modulation delay,
which could be the (2J )−1 time for 13C1H coupling. From Fig. 9,
effective bandwidths of 100 kHz can be readily achieved with
1-ms sech/tanh pulses using normal RF amplitudes available for
13C irradiation.

Another marginal advantage arises from the finding that there
is very little variation in scalar coupling modulation across the
effective bandwidth for a tanh/tan pulse. Calculation of the aver-
age reduced coupling constant during the pulse is accomplished
by substituting the expression

tan α = [tan(0.968πT/2) + s]/[20v tanh(10T)] [20]

into Eqs. [22] or [24] of Ref. (5) with Eq. [25] of (5) being
replaced by

x = [tan−1(−s)]/(0.968π/2). [21]

This yields a very strong dependence of Jr/Jo on v, but this
is insignificant in applications since tanh/tan operates at much
lower values of v and offset s than equivalent sech/tanh pulses.
For example, from Fig. 9a, a 1-ms sech/tanh pulse providing
an effective bandwidth of 50 kHz requires RFmax = 12 kHz and
from Eq. [11] the bwdth parameter must be set to 57 kHz so
that v = 2RFmax/bwdth = 0.42. From Ref. (5), Jr/Jo = 0.93 at
s = 0 decreasing to 0.8 at the edge of the effective bandwidth.
From Fig. 9b, an equivalent 50-kHz tanh/tan pulse operating at a
12-kHz RF amplitude will have Tp = 0.51 ms and from Eq. [18],

bwdth = 1050, so that v is only 0.02 units yielding Jr/Jo = 0.81
at s = 0 decreasing only slightly across the effective bandwidth
D BENDALL

FIG. 9. Plots of Tp versus RFmax at various effective bandwidths ranging
from 1 to 100 kHz for (a) the sech/tanh pulse at ιo = 0.985 and ιbw = 0.980 and
(b) the tanh/tan pulse with bweff also measured at ιbw = 0.980. The comparison
shows that for the same effective bandwidth in the range of 20 to 100 kHz and
the same RF peak amplitude, the pulse length of a tanh/tan pulse is about half
that of an equivalent sech/tanh pulse.

to 0.80 at the edge of bweff where s = 0.05. Thus the adjustment
factor (1− Jr/Jo) arising from these complex calculations is ad-
equately modelled for the tanh/tan pulse by a single polynomial
for v = 0 to 0.1 at s = 0 by

(1 − Jr/Jo) = −0.0031 + 9.4653v − 42.817v2. [22]

However, these modest advantages for the tanh/tan pulse come
at a price: The total power delivered by a tanh/tan pulse, and
thus the total contribution to sample heating, is considerably
more than that of an equivalent sech/tanh pulse because the
tanh function delivers close to constant RF amplitude throughout
almost all of the pulse. Indeed, average RF power for the tanh
function is given by

RF2

( ∫ 10

tanh2 x dx

)/
10 = RF2

/
1.11, [23]
max

0
max
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FIG. 10. Plots of total power delivered versus RFmax at bweff = 20, 40, and
100 kHz for the sech/tanh pulse at ιo = 0.985 and ιbw = 0.980 and the tanh/tan
pulse with bweff also measured at ιbw = 0.980. Tp was in the range of 0.5 to
5 ms. The comparison shows that for the same effective bandwidth and the same
RF peak amplitude, the power delivered by a tanh/tan pulse is about twice that
of an equivalent sech/tanh pulse.

whereas for the sech amplitude function it is

RF2
max

( ∫ 5.3

0
sech2x dx

)/
5.3 = RF2

max

/
5.3. [24]

To compare equivalent pulses having the same RFmax, and thus
shorter pulse lengths for tanh/tan, total pulse power (= [average
power]Tp) is plotted against RFmax in Fig. 10 for a range of
effective bandwidths. For a 20-kHz effective bandwidth, the
tanh/tan pulse delivers about twice the total power of an equiv-
alent sech/tanh pulse and this factor increases to about 2.5 for
50–100-kHz bandwidth pulses.

PARTIAL ADIABATICITY

Partially Adiabatic sech/tanh and tanh/tan Pulses

The question of when an adiabatic pulse fails to be adiabatic
goes beyond semantics and is a serious problem of definition.
For example, Rosenfeld and Zur (17) devoted an entire paper
to this problem as it concerns the sech/tanh pulse. Like many
authors we have previously allowed the border between adiabatic
and nonadiabatic to remain ambiguous and simply stated the
qualitative definition that |dα/dt |/Be should be small.

For sech/tanh, adiabaticity is obviously violated for Tpbwdth
values below about 10 units since the percentage inversion at
zero offset oscillates markedly between 100% and lower values

as RFmax is increased, and we have noted above that between
13 and 20 units sech/tanh departs by up to 4% from the linear
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master equations. Tanh/tan produces similar behavior at low
values of Tpbweff. Thus, a reasonable quantitative definition of
adiabaticity is the degree to which the pulse fits a straight line
plot of (RFmaxTp)2 versus Tpbwdth or Tpbweff. We will call this
“linear adiabaticity.” Sech/tanh is “linearly adiabatic” to better
than 5% for Tpbwdth > 11 and tanh/tan passes the same test for
Tpbweff > 3.

Below these limiting values there is a complex transition re-
gion between “partial” and nonadiabaticity. In this nonlinear
region both pulses provide effective bandwidths that are larger
than those calculated by the linear master equations and so gain
efficiency over the linear region. It is not possible to obtain uni-
versal equations for this complex region and instead some use-
ful individual results are provided in Figs. 11–13. In Fig. 11 for
0.4 < Tpbweff < 1.4, the tanh/tan pulse shows markedly greater

FIG. 11. Plots of optimal (RFmaxTp)2 versus low values of Tpbweff for the
tanh/tan pulse at ιbw = 0.99, 0.98, and 0.96. At each value of ιbw, the nonlinear
behavior in this partially adiabatic region is contrasted with the linear calibra-
tions that are accurate for Tpbweff > 3. The full extent of the curve is shown for
ιbw = 0.99 terminating at coordinates (0.076, 0.29) that correspond to a zero fre-
quency sweep and a completely nonadiabatic pulse. Each data point was obtained
using the variable bwdth method by minimizing RFmax at constant Tp for a cho-
sen value of bweff. To enable practical implementations of the efficient region,
0.4 < Tpbweff < 1.4, the three curves are, respectively, modelled by the poly-
nomials 0.041 + 5.93x − 8.20x2 + 4.17x3; 0.001 + 4.77x − 5.58x2 + 2.49x3;
and 0.068 + 3.31x − 3.16x2 + 1.25x3 (the necessary value of bwdth for a cho-
sen bweff can be obtained from Fig. 12). An equivalent optimal plot for the
P pulse of Ref. (19) was also obtained at ιbw = 0.96 by the “variable bwdth”
method by maximizing bweff at constant Tp for a chosen value of RFmax. The
P pulse curve terminates at (0.18, 0.79) corresponding to bwdth = 0. Variable
bwdth was achieved by multiplying the phase table provided for the P pulse in
(19) by a number between 0 and 10 since this is equivalent to varying the bwdth
frequency-sweep parameter as exemplified by Eqs. [2] and [4] for sech/tanh

and tanh/tan. The P pulse never obtains a lower value of (RFmaxTp)2 than the
tanh/tan pulse at ιbw = 0.96.
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horizontal sections evident for these two pulses are caused by wobbles on the
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FIG. 12. Plots of the Tpbweff versus Tpbwdth values used to produce
the optimal curves for the tanh/tan pulse under partially adiabatic con-
ditions in Fig. 11. The calibration for linear adiabaticity, effective above
Tpbweff = 3, is shown for comparison. The fitted polynomials for ιbw = 0.99,
0.98, and 0.96 are, respectively, −56.1 + 3.23x − 0.0611x2 + 3.88 × 10−4x3;
−39.5 + 2.19x − 0.0397x2 + 2.42 × 10−4x3; and 397.2 − 33.84x + 1.071x2 −
0.0149x3 + 7.73 × 10−5x4. Additional data points are provided for ιbw = 0.99
illustrating the dependence of bweff versus bwdth as the latter is reduced to zero
and the pulse becomes completely nonadiabatic at the termination coordinates
(0, 0.076).

efficiency than the linear calibrations. For example, an 80-µs
pulse yields a minimum of 99.5% inversion efficiency across
10 kHz yet this is readily achievable with RFmax = 16 kHz. An
equivalent rectangular pulse requires RFmax = 70 kHz. Garwood
(18) has recently highlighted the efficiency of a tanh/tan pulse
under conditions identical to those in Fig. 11 at Tpbweff = 0.3
(Tpbwdth = 40).

A detailed analysis of any adiabatic pulse at high RF ampli-
tude shows that the spin magnetization revolves rapidly around
the effective field Be as the latter rotates from the z to the
−z axis. The number of revolutions decreases with lower RFmax

and bwdth and the center of the region, 0.4 < Tpbweff < 1.4, for
tanh/tan corresponds approximately to just one complete revolu-
tion. A further reduction of RFmax and bwdth is shown in Figs. 11
and 12 for ιbw = 0.99 until at bwdth = 0 there is no frequency
sweep and the curve terminates in both figures. At this end point,
tanh/tan has become a simple amplitude-modulated tanh-only
pulse, like a rectangular pulse, characterized by a one-half spin
revolution at right angles to Be with Be stationary along the x
axis. All amplitude modulated pulses (no frequency or phase
shift) are completely nonadiabatic and correspond to a single
coordinate in a plot of (RFmaxTp)2 versus Tpbweff. For exam-
ple, for ιbw = 0.99, the rectangular pulse is at (0.071, 0.25),
a one-lobe sinc is at (1.01, 0.72), and the Gaussian pulse has

coordinates of (1.32, 1.49).
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Conversely, all frequency swept pulses must be partially adi-
abatic since a component of the spin magnetization, originally
aligned with Be, will rotate with Be. A widely accepted prop-
erty of adiabaticity is that spin manipulations are insensitive to
increases in RF amplitude. For tanh/tan at Tpbweff = 0.9 and
ιbw = 0.96 the percentage inversion oscillates as the RF ampli-
tude is increased. This is expected for partial adiabaticity, but
an increase of more than 3.2 times in RFmax above the optimal
value in Fig. 11 is required before the percentage inversion falls
below 95%. Partially adiabatic pulses are thus obviously useful
in high resolution NMR when compensation for variable RF is
required.

The partially adiabatic region for sech/tanh is illustrated in
Fig. 13, with the RF y-axis dependence changed to average
power times T 2

p to enable a comparison with other pulses.
Figure 13 illustrates the expected divergence of sech/tanh from
the linear calibration to more efficient conditions at low Tpbweff,

FIG. 13. Plots of optimal (RF2)mean T 2
p versus low values of Tpbweff at

ιbw = 0.96 for the tanh/tan pulse; the P pulse of Ref. (19); the sech/tanh pulse
truncated normally at 1%; and the sech/tanh pulse truncated at 10%. The data
were obtained as described in the caption to Fig. 11 but the y axis has been
changed to average RF2, and thus average power, times T 2

p by dividing (RFmax)2

by 1.11, 2.63, 5.3, and 3.0, respectively, for the four different pulses (e.g., see
Eqs. [23] and [24]). The calibration for linearly adiabatic sech/tanh is also
plotted for comparison. The complex area at lowest Tpbweff is expanded in
the inset illustrating a marginal average power advantage for the P pulse over
10%-truncated sech/tanh for a restricted region of Tpbweff. The discontinuous
inversion profiles resulting from the large truncation factors.
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but sech/tanh is only slightly more efficient than the best portion
of the tanh/tan curve reproduced from Fig. 11.

As shown in Fig. 13, and also found for sech/tanh decoupling
(STUD (10)), greater power efficiency can be obtained at low
Tpbweff by increasing the truncation level of the pulse from a
standard 1% (β = 5.3) to 10% (β = 3.0). This large trunca-
tion induces wobbles across the inversion profile that exceed
1− ιbw and successively add and subtract from bweff causing the
stepped nature of the resulting calibration “curve.” Interestingly,
each step from right to left in Fig. 13 corresponds to a reduction
of one in the number of spin revolutions about Be, a direct indica-
tion of this phenomenon described above for tanh/tan. The curve
between 0.5 and 2 units is reproduced in the inset to Fig. 13 and
shows a considerable advantage for 10%-truncated sech/tanh
over the best tanh/tan result in terms of average power. This
greater efficiency comes at a price in terms of increased sensitiv-
ity to increasing the RF amplitude. For example, at Tpbweff = 1.4
and ιbw = 0.96, normal sech/tanh inversion never falls below
93% for any increased value of RFmax, whereas a 2.5 times in-
crease in RF for the 10%-truncated pulse yields 90% inversion at
the edges of bweff. This is nevertheless a good result for practical
applications.

The Partially Adiabatic “P” Pulse

In addition to distinguishing partial and linear adiabaticity,
plots of (RFmaxTp)2 or (average power)T 2

p versus Tpbweff provide
a means of directly comparing the properties of different types
of RF pulses.

The recent “P” pulse of Barker et al. (19) was claimed to be
“numerically optimized nonadiabatic frequency- and amplitude-
modulated,” but being frequency swept it must be partially adi-
abatic. For example, the amplitude and frequency waveforms
of the P pulse are similar to those of 10%-truncated sech/tanh.
The P pulse was designed to be optimum for Tpbweff ≈ 1 and
this, and its partial adiabaticity, is confirmed in the comparative
simulations in Figs. 11 and 13.

Figure 13 demonstrates that at high values of Tpbweff the P
pulse enters a linearly adiabatic region modified to a stepped
dependence like that of the 10%-truncated sech/tanh pulse. The
steps are larger for the P pulse since it is truncated at 22% of
RFmax. The numerical optimization procedure has produced a
“sweet spot” in the 0.5 < Tpbweff < 1.5 region and this is more
clearly illustrated in the inset to Fig. 13. In comparison to 10%-
truncated sech/tanh, the P pulse provides a maximum 15% ad-
vantage in average power for 1 < Tpbweff < 1.5, but is much
worse everywhere else. The P pulse is also five times more sen-
sitive to increases in RF amplitude than 10%-truncated sech/tanh
at Tpbweff = 1.4 and ιbw = 0.96, although it retains some resid-
ual adiabaticity by being 1.7 times less sensitive than a rectangu-
lar pulse. Furthermore, an increase in the sech/tanh truncation
above 10% would further reduce any P pulse advantage. The

P pulse curve for ιbw = 0.96 is also plotted in Fig. 11 proving
that tanh/tan at the same RFmax always requires a smaller pulse
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length. The insensitivity of tanh/tan to RF inhomogeneity is also
vastly superior. Thus the numerical optimization of the P pulse
is a fair attempt at eliminating the benefits of adiabaticity, but
has not achieved much in terms of reducing average power or
pulse length in comparison to the well known analytic adiabatic
pulses.

The 15% power advantage of the P pulse over 10%-truncated
sech/tanh may be a worthwhile advantage for repetitive use in
spin decoupling. This is the application described by Barker et al.
(19) and for the first time they have demonstrated a power ad-
vantage over composite pulse decoupling at a narrow bandwidth.
In relation to previous work (e.g., (9, 10)) this was unexpected
because adiabatic decoupling dominates for large bandwidths
but falls short of the efficiency of composite pulse decoupling
at small bandwidths. The results in Fig. 13 now explain this
new finding—frequency swept pulses gain in efficiency in the
partially adiabatic region compared to the equations governing
linear adiabaticity. For example, at Tpbweff = 1, partially adia-
batic sech/tanh is twice as efficient as the level given by the
linear calibration.

Nevertheless, if previous developments are transferred to par-
tially adiabatic decoupling, the P pulse may not show any worth-
while gains over analytic waveforms such as sech/tanh. For
STUD+ decoupling (10) it was found that use of a sophisti-
cated phase cycle permitted a reduction in RF amplitude so that
each inversion need only be 85% complete on average. Barker
et al. (19) employed a simple 4-phase cycle and numerically
optimized the P pulse to achieve high inversion efficiency as at
ιbw ≈ 0.96 in Fig. 13. But at ιbw ≈ 0.7 (85% inversion) the P
pulse is 40% less efficient in terms of power than 10%-truncated
sech/tanh. We suggest that a detailed analysis of partially adi-
abatic decoupling should begin with the sech/tanh pulse and
numerical optimization should be employed to improve on that
baseline result, but such a major study is beyond the scope of
this article.

Partially Adiabatic BIPs

The common authors of Refs. (19, 20) appear to concur with
our observation that the P pulse is partially adiabatic since in
(20) they have developed a series of broadband inversion pulses
(BIPs) that are explicitly described as partially adiabatic. Our
respective notions of partial adiabaticity now seem similar, al-
though we have quantified the meaning of “partial adiabatic-
ity” relative to “linear adiabaticity.” BIPs were designed with
their adiabaticities reduced by numerical optimization to reduce
their compensation for RF inhomogeneity and increase their RF
power efficiency. Thus, similar to the P pulse, each BIP is op-
timized for a single coordinate on a plot of (RFmaxTp)2 versus
Tpbweff. BIPs use constant amplitude and numerically optimized
frequency sweeps and provide impressive results in terms of
low values of RFmax and Tp for a required bweff. The broadest

bandwidth example is described as “dwarfing” analytic adia-
batic pulses, including the tanh/tan pulse. The difficulty with this
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claim is that although the BIPs were numerically optimized, no
consideration was given to optimizing the analytic waveforms
of the adiabatic pulses (not even their truncation factors) to in-
crease their RF power efficiency. Furthermore, the BIPs were
compared with adiabatic pulses utilizing non-optimal combi-
nations of RFmax, Tp and bwdth. For example, the “dwarfing”
comment referred to tanh/tan at R = Tp bwdth = 110 whereas
the optimal value is 412.

To assist proper comparisons, the notation in Ref. (20), BIP-
dd-xx-yy, translates as

Tpbweff = 2 ∗ (xx/100) ∗ (dd/360); [25]

RFmaxTp = (dd/360) ∗ (1 − yy/100). [26]

The correction factor, (1 − yy/100), ensures that the lowest RF
amplitude for a BIP over its optimized range is used for compar-
ison with the optimal minimum value obtained from the tanh/tan
master Eqs. [16]–[19]. In the following list, ιbw = 0.96 so that
the percentage inversion of tanh/tan matches that of each BIP.
Generally this allowed for tanh/tan to perform slightly worse
at the lowest RFmax for the BIP and slightly better at its high-
est RFmax (and of course ever better as RF is increased beyond
that value). For the 12 BIPs in the order presented in Table 1
of (20) the following list takes the format, dd-xx-yy (Tpbweff,
RFmaxTp, % comparison): 360-30-5 (0.6, 1, −5%); 360-20-10
(0.4, 1, −17%); 360-5-25 (0.1, 1, +50%); 540-50-15 (1.87,
1.5, −18%); 720-100-10 (4, 2, −23%); 720-50-20 (2, 2,
−11%); 720-25-40 (0.5, 2, +14%); 720-75-15 (3, 2, −18%);
810-90-15 (4.05, 2.25, −19%); 900-100-15 (6.25, 2.5, −26%);
900-120-20 (6, 2.5, −27%); 1382-250-15 (19.2, 3.84, −23%).
(The number 50 for the fourth pulse has been changed from 75
in (20) as our simulations indicated a typing error.) The percent
comparison value in each case (in boldface) is the percentage by
which the necessary RFmax for the BIP exceeds (positive) or is
less than (negative) that required for tanh/tan. The best results
for the BIPs are for large bandwidths compared to RFmax and
reduced compensation for RF inhomogeneity. Discarding the
remainder plus those at very low Tpbweff, and thus the poor re-
sults, yields modest advantages of 11–27% for BIPs over normal
tanh/tan.

However, these apparent 11–27% gains of BIPs over tanh/tan
are largely illusory because no attempt has been made to op-
timize the standard tanh/tan analytic waveforms to specifically
reduce the required RFmax. Historically (3, 4), the tanh/tan pulse
was introduced to eliminate the large (≈5%) wobbles on the in-
version profile produced by the constant/tan pulse (8). These
wobbles, induced by the discontinuous rectangular amplitude
function, are eliminated by the smooth tanh sweep at a cost of
increasing RFmax by 7% to provide the same average RF am-
plitude. In unpublished work (M. Garwood, personal commu-
nication (2001)) the originators of tanh/tan realized during the

preparation of Ref. (3) that the pulse could be made more effi-
cient in terms of a lower RFmax or Tp by changing the truncation
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of the tanh and tan functions, but the modest gains were counter-
balanced by a loss in compensation for RF inhomogeneity. The
values chosen, tanh(10) and tan κ = 20, preserved the tolerance
to a factor of 10 increase in RF, suitable for in vivo NMR, but still
allowed for short pulses applicable to high resolution NMR—
a truly universal RF pulse! In some nonexhaustive simulations
we have found that the BIP efficiencies can be approached by
tanh/tan employing large reductions of the tan truncation from
the value of 20. For example, BIP-1382-250-15, can be closely
matched by a tanh/tan pulse with tan κ = 1.34, bweff = 100 kHz,
bwdth = 241 kHz, Tp = 192 µs, and RFmax = 21.44 kHz, com-
pared to RFmax = 20 kHz for the BIP. Both pulses exceed
ιbw = 0.895 (94.8% inversion) at 0.85RFmax, the tanh/tan pulse is
slightly worse at 1.0RFmax, slightly better at 1.15RFmax and then
increasingly superior as the RF amplitude is further increased.
The BIP advantage in terms of RFmax is just 7%, the same pro-
portional difference required to maintain the same average RF
when changing from constant amplitude to the tanh function.
This translates to a 14% reduction in Tp at the same RFmax and
bweff, or equivalently the BIP “dwarfs” tanh/tan to the extent of
14% in bandwidth at the same Tp and RFmax. Strikingly, although
the truncation impairs the ability of tanh/tan to compensate for
RF inhomogeneity, it still compensates for a gargantuan 4 times
increase in RFmax compared to just ±15% for the BIP.

Another drawback is that each BIP is optimized for a single
coordinate on a plot of (RFmaxTp)2 versus Tpbweff. The values
for these coordinates can be obtained from the above list. If the
value of Tpbweff is varied by 50% the advantage of having a
lower RFmax is lost and the BIP no longer inverts as well as
an equivalent tanh/tan pulse. To be competitive, a large online
library of unique BIPs is required at say 10% increments in
Tpbweff to cover the entire range implementable with a simple
macro for the analytic tanh/tan pulse.

A possible explanation for the failure of the BIP strategy ex-
pressed in Ref. (20) can be found by examining BIP-1382-250-
15 relative to our notions of partial and linear adiabaticity. The
waveforms for this BIP are similar to a truncated constant/tan
(tan x ≈ 4) pulse. Thus, the above discussion of the development
of tanh/tan from constant/tan is doubly apt. To easily analyze
either constant/tan or this BIP over a large range of conditions
it is necessary to choose a low ιbw to avoid the ≈5% amplitude
truncation wobbles and thus avoid the type of discontinuities ex-
emplified by the P pulse in Fig. 13. Choosing ιbw = 0.8, the BIP
yields a linear plot of (RFmaxTp)2 versus Tpbweff with a scatter
of data points that is the residual product of the discontinuities.
This plot was made using the “variable bwdth” method and mul-
tiplying the phase modulation provided in (20) by a number N
to vary bwdth. The plot is linear over any range that exceeds the
period of the discontinuities evident at higher ιbw. The BIP nu-
merical optimization produces a large nonlinear detour to lower
and more efficient values of (RFmaxTp)2 at N ≈ 1 but this is only
evident at these higher ιbw values. Furthermore, the ≈5% wob-

bles are suppressed at N values close to unity. Thus, the BIPs are
basically linear adiabatic pulses. The numerical optimizations
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are almost entirely devoted to trading adiabaticity (and the com-
pensation for RF variance) as a means to suppress the truncation
wobbles that were regressively reintroduced via the discontin-
uous rectangular amplitude function. Little is achieved in the
overall reduction of RFmax.

CONCLUSIONS

This analysis of adiabatic sech/tanh and tanh/tan pulses shows
that their inversion properties are constant over a wide range of
conditions provided that

(RFmaxTp)2 = m1Tpbwdth + c1, [27]

(RFmaxTp)2 = m2Tpbweff + c2, [28]

since Tpbwdth and Tpbweff are also linearly related as

Tpbwdth = m3Tpbweff + c3. [29]

These relationships break down at low values of Tp bwdth where
the pulses become partially adiabatic.

The intercept c1 in Eq. [27] is quite small for both pulses and if
this is set to zero the equation becomes RF2

maxTp/bwdth = m1. It
was noted from Eq. [5] that this quantity is related to adiabaticity
and in Ref. (21) the reciprocal of Eq. [5] was defined as the
adiabaticity factor Q. For zero offset, Q = (2π/5.3)RF2

maxTp/

bwdth for the sech/tanh pulse at the middle of the adiabatic
sweep, so the dominant relationship in Eq. [27] is obviously the
adiabaticity of the pulse. Nevertheless, there appears to be no
way to prove Eqs. [27]–[29] algebraically, hence our numerical
approach.

A proportionality between average power (∝ RF2
max) or total

pulse power (∝ RF2
maxTp) and bandwidth (bwdth or bweff) at

constant pulse length Tp has been variously suggested before
(e.g., (9, 10, 22)). Master equations [27] or [28] take this one step
further. Appropriate multiplication by Tp yields dimensionless
quantities that are proportional under all conditions if c1 = c2 =
0. Thus, while it may not be surprising that these constants, c1

and c2, are small, their origin is not obvious and it is serendipitous
that they are independent of RFmax, Tp, and bwdth.

The different behavior of the two pulses, exemplified by
their profiles drawn in Fig. 1, induced a different course of
analysis for the two cases. These can be reconciled by setting
�ι = 0.005 and ιo = ιbw+0.005 in Eqs. [9]–[11] and [13] for the
sech/tanh pulse. The result is that the slopes mn and intercepts
cn of Eqs. [27]–[29] depend only on the minimum selected ex-
tent of inversion, ιbw, across the effective bandwidth, bweff. The
differences between the two types of pulse are then entirely man-
ifested in the different numerical constants in the equations of
mn = f (ιbw) and cn = f (ιbw). Since the two types of pulse behave
quite differently, yet provide the same form of master equations

[27]–[29], we confidently suggest that all adiabatic pulses will
behave in this way. While some residual doubt may remain con-
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cerning this conclusion, it certainly applies to the infinite number
of pulses comprising the family of “constant adiabaticity” pulses
(22, 23), which includes the sech/tanh pulse. Overall the analysis
determined the optimum conditions for application for the two
types of pulse in terms of three independent and two dependent
variables.

Two concepts have been defined, “linear adiabaticity” appli-
cable to the behavior of adiabatic pulses under conditions where
linear master equations of the form of Eqs. [27]–[29] apply, and
“partial adiabaticity,” which we have used to describe the be-
havior at lower values of Tpbwdth or Tpbweff. In these terms a
pulse can be said to be adiabatic when it complies with these
equations to some defined level of accuracy, hence providing an
exact measure of adiabaticity.

During this study the “variable bwdth” method was devised
to produce plots of (RFmaxTp)2 versus Tpbweff for optimal condi-
tions. Our experience suggests that this is a general method for
any RF inversion pulse. Any adiabatic pulse will produce a lin-
ear plot above some limiting value of the x or y coordinate. Any
partially adiabatic pulse, which includes all frequency or phase
modulated pulses that are not linearly adiabatic, will produce a
more complex curve. Pulses that are only amplitude modulated
are characterized by a single coordinate in the 2D plot. Such
plots permit the direct comparison of the relative performance
of any RF inversion pulses and it is hoped that new pulses will
be compared with existing pulses in this way at the time of their
invention. For adiabatic pulses there is also the facile alternative
of quantitatively comparing the results of their respective linear
master equations.

It appears that plots of (RFmaxTp)2 versus Tpbweff for any lin-
early adiabatic pulse will have a positive y intercept. Thus, plots
in the partially adiabatic region must curve downwards from the
linear region to terminate close to the origin. Accordingly, par-
tially adiabatic pulses must always be more efficient in terms
of pulse length and RF amplitude than linearly adiabatic pulses.
This advantage is accompanied by the reintroduction of tip-angle
dependence on increasing RF amplitude in contrast to the insen-
sitivity of adiabatic pulses in the linear region. However, this
dependence is modest for the tanh/tan and sech/tanh pulses in
the partially adiabatic region except close to the termination
point.

These general methods of assessing the properties of linear
and partial adiabatic pulses were used to examine the partially
adiabatic P pulse of Barker et al. (19) and BIP pulses of Smith
et al. (20). These numerically optimized pulses demonstrate
modest gains of up to about 10% in either total power or max-
imum RF amplitude over comparable applications of the ana-
lytic sech/tanh or tanh/tan pulses with appropriate truncation
factors. This modest improvement is accompanied by a large
loss of adiabaticity and thus a large increase in sensitivity to RF
inhomogeneity. Furthermore, each numerically optimized pulse
is only useful for a single product of pulse length and effective

bandwidth, like composite pulses but unlike normal adiabatic
pulses.
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By comparing BIPs to examples of the tanh/tan pulse with a
highly truncated tan function, we concluded that the effort of nu-
merical optimization, and the inevitable sad loss of adiabaticity,
has been devoted largely to suppressing the deleterious effects
of reintroducing a constant amplitude waveform, an outmoded
concept (3, 7, 8), into the BIPs. If a general 20% reduction in
RFmax relative to the standard tanh/tan pulse is seen to be of
real value in high resolution NMR, then the two truncation fac-
tors inherit in the tanh/tan functions should be optimized. A
detailed method for doing this has been presented in this paper,
but tedious optimizations over two further parameters require a
computerized approach, beyond the goals of the present study.
However, the methods established here, primarily the optimi-
zation of (RFmaxTp)2 versus Tpbweff dependencies, are ripe for
digital exploitation.

Optimization of the analytical forms of normal adiabatic
pulses is a worthwhile goal since the master equations applicable
to these linearly adiabatic pulses will always be valid for a wide
range of effective bandwidths and pulse lengths, yet still com-
pensate for large RF inhomogeneities. Numerical optimizations
that sacrifice adiabaticity and are specific to particular com-
binations of pulse length and effective bandwidth are of less
value even when proven to be more efficient than the original
pulses. For example, in relation to STUD+ decoupling (10) we
noted that 5–10% gains could be made by numerical optimiza-
tion (similar to the BIP gains over truncated tanh/tan). However,
this work has not been published since these modest improve-
ments are outweighed by the ease of implementing the analytic
sech/tanh waveform over a wide range of conditions using a
simple computer macro.
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